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During the period July 1, 1983 to June 30, 1984, the Principal Investigator

gave an invited talk on "Life Distribution Properties of Devices Subject to

Deterioration" at the International Semni-Markov Processes Conference that was held

at Universite Libre de Bruxelles under the auspices of the Bernolli Society.

Moreover, he helped in organizing the session on Reliability Theory at the

conference. He co-edited the proceedings of the conference he organized on

Survival Models, Maintenance Policies and Life Testing. The proceedings will

be published by Academic Press Publishing Company under the title "Reliability

Theory and Models: Stochastic Failure Models, Optimal Maintenance Policies,

Life Testing, Structure"; it is scheduled to appear on August 15, 1984. He

also wrote the paper "A Power Transformation Exponential Regression model for

Cencored Failure Time Data" with Professor David Young of Brunel University,

England. This paper is to be sukinitted for publication to Communications in

Statistics; he revised the paper "Life Distribution Properties of Devices

Subject to a Pure Jump Damage Prc .ess" which will appear in the December 1984

issue of Journal of Applied Probability. He is in the process of writing a

paper on "Imperfect Maintenance Models" which will be submitted to Journal of

Operations Research.

The Co-investigator attended numerous seminars and work group sessions on

stochastic processes at University of Paris VI between March 15, 1984 and June

1, 1984. He wrote two papers:

(1) An Iterative Scheme for Approximating Optimal Replacement Policies

(2) Stability of Optimal Replac=met Policies

The first paper is to appear in Reliability Theory and models: Stochastic

Failure Models, Optimal Maintemance Policies, Life Testing, Structures,
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M. Abdel-Hameed, E. Cinlar and J. Quinn, Editors, Academic Press, New York,

1984. The second paper has been submitted for publication.
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SNRY
OF RESEARCH CONDUCTES

A) LIFE DISTRIBUT7IO PROPERTIES OF DEVICES SUBJEY2 M A

PURE JUMP DAMAGE PROCESS. Suppose that a device is subject to

damage, the anount of damage it suffers, aver time, is assumed

to be an increasing pure jump process. We denote such a process

by X -- (Xt, t _a 0).

It is known that there exists a Poisson randon measure on R+ x R+ whose mean

meausre at the point (s,z) is ds dz/z 2 and a deterministic function c defined

on the positive quadrant that is increasing in the second argument such that

E f(Xs_,X) fs- = N(ds,dz) f(Xs ,Xs_+c(Xs_ , z))
s.:st [Olt]xR+

almost everywhere for each function f on R+ x R+ with f(x,x) = 0 for

all x in R+. In particular, if follows that

Xt = X0 + f N(ds,dz) c(XsZ).
[Ot]xR+

The above formula has the following interpretation

t Xt(w) jumps at s if the Poisson random measure N(w,.) has an aton

(sz) and then the jump is fram the left-hand limit Xs (w) to the right-hand

limit

Xs = X s + c(X sZ).

The function c(x,z) represents the damage due to a shock of magnitude z

occuring at a time when the previous cumulative damage is equal to x.

Assume that the device has a threshold Y and it fails once the damage exceeds

or equal to Y. The failure time is therefore given by

=inf ( t : Xt_ z }

Let G be the right tail probability of the randm variable Y. Then the survival
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function is given by, for t Z 0,

S(t) P(S > t)

= EG(Xt) H

We show that life distribution properties of G are inherited as

corresponding properties of S. The following are samples of sane of the results

obtained:

(1) Theorem. Suppose that the function c above satisfies the following

condition

c(.,z):R+ - R+ is increasing for each z _ 0.

Then

(i) S has increasing failure rate when G has increasing failure rate and

X has a totally positive density of order two

(ii) S has increasing failure rate on the average when G has an increasing

failure rate on the average and X has a totally positive density if order two

(iii) S is new better than used if G is new better than used

(2) Theorem. Suppose that the function c satisfies the following condition

c(.,z):R+ - R+ is decreasing for each z > 0.

Then

(i) S has decreasing failure rate when G has decreasing failure rate and

X has a totally positive density of order two.

(ii) X has a decreasing failure rate average when G has a decreasing

failure rate average and X has a totally positive density of order two.

(iii) S is new worse than used when G is new worse than used and the

function x . x + c(x,z) is an increasing function for each z z 0.

Furdthenire, if the threshold depends on time and Yt is the threshold at

time tZO. Then
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S(t) E G(Xt,t)

where G(x,t) = P(Yt z x) for x, t z 0. In this case we obtain the following

result

(3) Theorem (i) Suppose that G(. ,t) has increasing failure rate average for

each t Z 0, the mapping G(x,.) is decreasing function for each x z 0, X has

a totally positive density of order two, and c(.,z) is an increasing function

for each z _> 0. Then S has increasing failure rate average.

(ii) Suppose that G(.,t) has a decreasing failure rate average for each

t z 0, the mapping G(x,.) is an increasing function for each x z 0, X has a

totally positive density of order two and c(.,z) is a decreasing function for

each z 2: 0. Then S has decreasing failure rate average.

2(iii) Suppose that V = -in G is a subadditive function on R; and c(.,z) is

an increasing function for each z z 0. Then S is new better than used.

2(iv) Suppose that V above is a subadditive function on R2 while the

function x - x + c(x,z) is decreasing for each z _> 0. Then S is new worse

than used.

We also discuss the optimal replacement problem for such devices.

Define, for t z 0,

z t X t ,t

The process Z = (Zt ) is obtained by killing the process X at the failure time

of the device.

A device subject to the damage process Z can be replaced before or at

failure. Each replacement at failure cost c dollars, c > 0. The cost of a

replacement before failure depends on the damage level at the time of replacement

and is denoted by c(.). That is to say, c(x) is the cost of a replacment

when the damage level at time of replacemnt is equal to x. Naturally, we
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assume that c(x) is increasing and bounded above by c. Let (Ht) be the

canonical history of Z. Moreover, U denotes the class of stopping times that

do not exceed the life time t.

For any stopping time *r in U we let denote the expected cost of

replacement per unit time. We are interested in finding the stopping time r*

in U satisfying

inf
T* -r W

That is to say, we want to find the stopping time in U that mininuzes the

expected cost per unit time over U. We call such stopping time the optimal

replacement tine. We give conditions on the cost function c(x) and the damage

function c(x,z) that guarantee that the optimal replacement policy is a control-

limit policy.

The above results have been accepted for publication in Journal of Applied

Probability and is scheduled to appear in December 1984.

B) A POWER TRANSFORMATION EXPCtENIAL REGRESSION MDDEL FOR

CENSORED FAIURE TIE DATA. Suppose that we have n items which are

subject to failure. Let T1 , T2 , ... , n be the random variables

representing the failure times of the first, second, ... , n th

itemn respectively. We assume that right censoring may occur

because of the need for early termination of the experiment and let

T, T2 , ..., Tn represent the recorded survival times. Defining
nI

censoring indicator variables

{ if Ti is uncensored

if Ti is censored

we have
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Ti =T i  if w =1 and T. > T if w.= 0.1, 11 1

We let

n n
n E w. and n = E (1-wi )i=1 i1 l

denote the numbers of uncensored and censored observations respectively.

Without loss of generality we label the individuals such that the first

nfu items have uncensored times to failure and the remaining nu have

censored times to failure.

We now suppose that measurements are available of k explanatory variables

X1 , X2 ' ... , Xk. Setting (xx1  X 2 , ... , xk), the probability density function

and survival function of T given x are denoted by f(t;x) and S(t;x)

respectively. If the failure rate does not depend on t, for any given x,

T has the exponential distribution with probability density function
IX0 exp (-t/p X) I t _k 0

f(t;x) = I

otherwise.

Various models have been proposed in the literature to represent the

dependence of jx on x. Same suthors consider the model form

Px= X(+x')

while others use the form

)x = /(1 + x' )

where ' = ... , ) and X is a positive constant. Both models require

that the condition x'_ > -1 must be imposed to insure that ux > 0. An

alternative model which does not require a constraint to be imposed on x'_O is

Ux - exp (x'B)
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This model arises for the exponential case from the well-known family of

proportional hazard repression models in which an assumed underlying hazard

function is adjusted by nultiplicativQ exponential factors to allow for the

effect of the explanatory variables.

In this paper, we consider the power transformation model given by

x = 1 + 6x,_ 0)
1 6

We refer t6" 6 as the power parameter. It is seen that when 6 = 1, the

model corresponds to the first model discussed in the previous paragraph,

second model is obtained after appropriate reparameterisation. Mien 6 - 0

the exponential model for ix given above is obtained.

In general, the power parameter 6 as well as the coefficient vector 8

will have to be estimated fron the data. We obtain maxim=m likelihood estimators

for these parameters and it is shown how the estimates can be obtained using the

statistical package G LIM. We also discuss the assessment of the goodness of

fit of the model and numerical examples are given to illustrate the procedure.

C) STABILITY OF OPTIMAL REPIACEMr PROBUM. In this work we

complete and considerably extend the work reported on in preliminary

fashion in section I(D) of last years proposal. Let X = {X t, t Z 01

be a Hunt process with state space E. Let X be stopping time for X

and let X be the process obtained by killing X at X. The state

space of X is now E = E u{A) where the augmented point A denotes

"failure". A generalized replacement policy is a Markov time which

detennines a system's replacement in terms of its history. A

generalized c-opthml replacement vlicy at x is a generalized policy

such that E)g(Xz  )/z(.re) is within e of the minum long-run average

oost for the replacement cost function g. Here E denotes expectation

with respect to the process X.

_J
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A generalized optimal replacement problem (X,X,g) (at x) is termed stable

if every nearly optimal policy for the problem (X,X,g) is nearly optimal for

any "sufficiently close" problem (X 1, 1 ,g1 ) and vice-versa. We show that, if

life times are not permitted to vary then under suitable definitions of

"closeness between problems", optimal replacement problems are stable. Examples

show that, when lifetimes can vary, such is no longer the case. Mien X is

restricted to be a one dimensional wear/damage process and the lifetimes are

restricted to be threshold times, it is shown that, if the threshold is one which

X misses with probability one, then every problem (X,X,g) is stable.

These results have been submitted for publication and were part of a talk

given at the 1983 Charlotte conference on Stochastic Failure Models.

D) AN ITERATIVE SCHE FOR APPROXIMATING OPTIMAL REPIACEMENT

POLICIES. Let X = Xt, t > 0 be a stochastic process with augmented

state space EA and lifetime X = inf {t JXt = A). In this paper we

analyze the follwoing iterative technique. Let b1 = E0g(X )/E 0 (M).
blE 0

Consider the problem of maximizing the criterion (bl,,) = b (E )-E 0g(X

for T s A. If we are interested in a generalized c-optimal policy,

then tolerances x > 0 and $ > 0 are determined in terms of X,g,A and

e so that, if a O-optimal policy 1 for (blt) gives 4(bl,T) _S c

then A is already e-optimal, otherwise take b2 = E 0g(XT )/E0(TI )
1

and repeat the steps on the criterion *(b 2 ,r) = b2E0 (T) - E 0g(XT).

Under very reasonable assumptions on g (it must be positive and

bounded away from zero), it is shown that this iterative method will

supply a generalized c-optimal replacement policy. We further

inplement this scheme on a cuputer for certain Markovian damage models.

In doing so, the discrete approximations which are required are fully

justified and some feeling for the speed of convergence of the procedure
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is obtained. The iterative scheme itself is very fast. Solving the

related optimal stopping problems using dynamic programming techniques

is, however, very slow.

This work constitutes a completion and considerable extension of that

reported on in a preliminary fashion in section I(E) of last year's proposal.

The iterative scheme itself is now seen to work for artibrary stochastic

processes (as opposed to just simple wear processes). The justification of the

discrete approximations required in the associated optimal stopping problems

constitutes an effort in the spirit of some of the work of Whitt but applied to

a problem which is outside the framework of those he has considered. The

numerical implementations and simulations also represent considerable progress on

the research proposed in the last paragraph of section II(E) of last year's

proposal.

These results are to appear in the proceedings of the Charlotte conference

on Stochastic Failure Models.

E) STABILITY OF OPTIMAL STOPPING PROBLEMS. For a process X

and a reward function g defined on the state space of X, we have

defined concepts of stability of the optimal stopping time (X,g) in

previously reported work. Roughly, (X,g) is center stable if a

close to optimal solution to the stopping time problem (X,g) is

close to optimal for any problem (X ,g1 ) which is sufficiently "near"

to the problem (X,g). The problem (X,g) is termed stable if close to

1optimal solutions to any sufficiently "near" problem (X ,g1 ) are close

to optimal for (X,g). There are two new things to report here. First

we have shown that, for n Z 2, Brownian notion in Rn is not stable.

This solves Question 2 of part II(E) of last year's proposal. We

have also made headway in better understanding the metric we are using



to measure distances between processes. Recall that, if X (2, Mt, M,

p ,et,Xt) is a standard process in the usual sense, then SX denotes

the set of standard processes Y =(,Myt,MY'Py,(t,Xt). For X, Y cS

define d(X,Y) by

d(X,Y) = sup sup xp (A) pX (A)I.

xeE AtF

We recognize d-convergence as being convergence in total variation

0on initial segments Ft . In the literature, weak convergence is what

is normally looked at when one wants to consider different processes

to have the same path space but different measures. However, examples

show that weak convergence is not strong enough for any kind of stability

for undiscounted problens with discontinuous reward functions (exactly

the setting we get into when considering optimal replacement problens).

stat we have established about d-convergence is that, for diffusions with

the same diffusion term, d-convergence is implied by uniform convergence

of drift terms. However, if in the strictly elliptic case the diffusion

terms are permitted to vary, then a fairly simple argument shows that

the processes are singular and hence as far apart in the d-metric as

is possible. This means that the study of stability within the class

of diffusions is far from complete.

For ccarpound Poisson processes, the situation is nice. Parameter convergence

combined with convergence in total variation of the jump distributions is enough

to get d-convergence for these processes.
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